PROWAREtech
C++: Neural Network, Supervised Deep Machine Learning Example
Supervised learning is a machine learning paradigm for problems where the available data consists of labeled examples, meaning that each data point contains features (covariates) and an associated label. The goal of supervised learning algorithms is learning a function that maps feature vectors (inputs) to labels (output), based on example input-output pairs.
This neural network code is available in a C# library. This C++ library runs about 15% faster than the C# library compiled with .NET 8, which says a lot about how far .NET has come. The C++ library requires much less memory than the managed code of the C# library, so if working with very large networks (with a large number of parameters), then use the C++ library even if the driver of the application is a C# app using the Windows DLL or Linux shared library.
See unsupervised learning version. Also, see convolutional neural network example.
Learn about feedforward neural networks. Learn more about the lambda parameter.
Visit the playground for related.
This network supports both Categorical Cross-Entropy (CCE) and Sparse Categorical Cross-Entropy (SCCE). To support CCE, supply a one-hot vector, for SCCE, supply the index into the output layer — that's it! Oh, plus make sure to use a linear output neuron activation for SCCE, and SoftMax for CCE.
Download these files including how to train the network and the MNIST image files of hand-written digits with their labels: NEURALNETWORK.zip. Experiment with the number of neurons and layers. This example usage code requires SixLabors.ImageSharp (NuGet package).
NOTE: The higher loss values in SCCE aren't necessarily indicating less confidence - they're just measured differently because of working with logits. The SCCE network is probably working correctly, so do not interpret the loss values through a CCE lens. Loss values will be greater with the SCCE.
The neural network code followed by some C# code for creating a confusion matrix chart:
// NOTE: This network only supports forms of Categorical Cross-Entropy loss a.k.a. SoftMax loss for multi-class classification.
// NOTE: This network supports "Sparse Categorical Cross-Entropy" (SCCE) which requires a Linear final layer activation.
// NOTE: SCCE requires much less memory for networks with a large number of outputs, like NLP networks, than having to
// create a one-hot array for each output. SCCE networks are more efficient with resources.
#ifndef _CCE_NEURAL_NETWORK_H
#define _CCE_NEURAL_NETWORK_H
#include <immintrin.h> // SIMD
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <thread>
#include <cstdlib>
#include <float.h>
#include <string>
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <random>
#include <cmath>
#include <cctype>
#include <limits>
#define MACRO_MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
#define MACRO_MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
namespace ML
{
class Matrix
{
private:
float* data; // "data" is the name of the json object key
int references;
unsigned rows, columns; // "rows" and "columns" are the names of the json object keys
void copy_array(float* values)
{
for (unsigned int i = 0; i < rows * columns; i++)
data[i] = values[i];
}
Matrix() : data(nullptr), references(0), rows(0), columns(0) {}
Matrix(const Matrix& m) : data(nullptr), references(0), rows(0), columns(0) {}
public:
~Matrix()
{
delete[] data;
data = nullptr;
}
Matrix(int rows, int columns) : references(0)
{
this->rows = rows;
this->columns = columns;
unsigned int len = rows * columns;
data = new float[len];
for (unsigned int i = 0; i < len; i++)
data[i] = 0.0f;
}
Matrix(int rows, int columns, float* values) : references(0)
{
this->rows = rows;
this->columns = columns;
data = new float[rows * columns];
copy_array(values);
}
Matrix(Matrix* m) : references(0)
{
rows = m->rows;
columns = m->columns;
data = new float[rows * columns];
copy_array(m->data);
}
void AddReference()
{
references++;
}
int RemoveReference()
{
int ret = --references;
if (ret < 1)
delete this;
return ret;
}
const float* Data() const
{
return data;
}
unsigned int Rows() const
{
return rows;
}
unsigned int Columns() const
{
return columns;
}
void Transpose()
{
Matrix result(columns, rows);
for (unsigned int c = 0; c < columns; c++)
{
for (unsigned int r = 0; r < rows; r++)
result.SetValue(c, r, GetValue(r, c));
}
Copy(&result);
}
static void Add(Matrix* M, float V)
{
for (unsigned int i = 0; i < M->rows; i++)
{
for (unsigned int j = 0; j < M->columns; j++)
M->SetValue(i, j, M->GetValue(i, j) + V);
}
}
static void Multiply(Matrix* A, Matrix* B, Matrix** C) // this is part of the dot product; uses SIMD
{
*C = nullptr;
const unsigned int C_rows = A->rows, C_cols = B->columns, A_cols = A->columns;
if (A_cols == B->rows) // then matrices can be multiplied because dimensions are compatible
{
const unsigned int lengthSIMD = 8;
float c;
alignas(32) float vectorA[lengthSIMD], vectorB[lengthSIMD], vectorSum[lengthSIMD];
*C = new Matrix(C_rows, C_cols);
for (unsigned int i = 0; i < C_rows; i++)
for (unsigned int j = 0; j < C_cols; j++)
{
__m256 vecSum = _mm256_setzero_ps();
int k = 0;
int k_limit = A_cols - lengthSIMD;
while (k <= k_limit)
{
for (unsigned int x = k; x < k + lengthSIMD; x++)
vectorA[x - k] = A->GetValue(i, x);
for (unsigned int x = 0; x < lengthSIMD; x++)
vectorB[x] = B->GetValue(k + x, j);
__m256 vecA = _mm256_load_ps(vectorA);
__m256 vecB = _mm256_load_ps(vectorB);
__m256 vecMul = _mm256_mul_ps(vecA, vecB);
vecSum = _mm256_add_ps(vecSum, vecMul);
k += lengthSIMD;
}
_mm256_store_ps(vectorSum, vecSum);
float sum = vectorSum[0] + vectorSum[1] + vectorSum[2] + vectorSum[3] + vectorSum[4] + vectorSum[5] + vectorSum[6] + vectorSum[7];
for (; k < A_cols; k++)
sum += A->GetValue(i, k) * B->GetValue(k, j);
c = (*C)->SetValue(i, j, sum);
if (std::isnan(c) || std::isinf(c)) // then inf or NaN, delete and nullify (*C);
{
delete* C;
*C = nullptr;
return;
}
}
}
}
static void MultiplyNonSIMD(Matrix* A, Matrix* B, Matrix** C) // this is part of the dot product
{
*C = nullptr;
const unsigned int m = A->rows, p = B->columns, n = A->columns;
if (n == B->rows) // then matrices can be multiplied because dimensions are compatible
{
double a, b;
float c;
*C = new Matrix(m, p);
for (unsigned int i = 0; i < m; i++)
for (unsigned int j = 0; j < p; j++)
for (unsigned int k = 0; k < n; k++)
{
a = A->GetValue(i, k);
b = B->GetValue(k, j);
c = (*C)->SetValue(i, j, (float)((*C)->GetValue(i, j) + a * b));
if (std::isnan(c) || std::isinf(c)) // then inf or NaN, delete and nullify (*C);
{
delete* C;
*C = nullptr;
return;
}
}
}
}
void Dropout(float dropoutRate) // apply a dropout to the matrix
{
for (unsigned int i = 0; i < rows; i++)
{
for (unsigned int j = 0; j < columns; j++)
{
if (rand() / (float)RAND_MAX < dropoutRate)
SetValue(i, j, 0.0f);
}
}
}
float GetValue(unsigned int row, unsigned int column)
{
return data[row * columns + column];
}
float SetValue(unsigned int row, unsigned int column, float value)
{
return data[row * columns + column] = value;
}
void Copy(Matrix* m)
{
if (rows * columns != m->rows * m->columns)
{
delete[] data;
data = new float[m->rows * m->columns];
}
rows = m->rows;
columns = m->columns;
copy_array(m->data);
}
};
class MatrixArray
{
private:
unsigned int arraySize, nextIndex;
Matrix** matrices;
void nullify()
{
matrices = new Matrix * [arraySize];
for (unsigned int i = 0; i < arraySize; i++)
matrices[i] = nullptr;
}
MatrixArray() : arraySize(1000), nextIndex(0)
{
nullify();
}
MatrixArray(unsigned int count) : arraySize(count), nextIndex(count)
{
nullify();
}
MatrixArray(const MatrixArray* matrixArray) : arraySize(matrixArray->arraySize), nextIndex(0)
{
nullify();
for (unsigned int i = 0; i < matrixArray->nextIndex; i++)
Add(new Matrix(matrixArray->GetMatrix(i)));
}
public:
static MatrixArray* CreateMatrixArray()
{
return new MatrixArray();
}
static MatrixArray* CreateMatrixArray(unsigned int count)
{
return new MatrixArray(count);
}
static MatrixArray* CreateMatrixArray(const MatrixArray* matrixArray)
{
return new MatrixArray(matrixArray);
}
~MatrixArray()
{
for (unsigned int i = 0; i < nextIndex; i++)
{
if (matrices[i])
if (!matrices[i]->RemoveReference())
matrices[i] = nullptr;
}
delete[] matrices;
matrices = nullptr;
}
void Add(Matrix* matrix)
{
if (nextIndex == arraySize)
{
unsigned int size = arraySize + 1000;
Matrix** newMatrices = new Matrix * [size];
for (unsigned int i = 0; i < size; i++)
newMatrices[i] = (i < arraySize ? matrices[i] : nullptr);
delete[] matrices;
matrices = newMatrices;
newMatrices = nullptr;
arraySize += 1000;
}
if (matrix)
matrix->AddReference();
if (matrices[nextIndex])
matrices[nextIndex]->RemoveReference();
matrices[nextIndex] = matrix;
nextIndex++;
}
unsigned int Count() const { return nextIndex; }
Matrix* GetMatrix(const unsigned int index) const
{
return matrices[index];
}
void Set(Matrix* matrix, unsigned int position)
{
if (matrices[position])
matrices[position]->RemoveReference();
if (matrix)
matrix->AddReference();
matrices[position] = matrix;
}
MatrixArray* GetRange(const unsigned int index, const unsigned int length) const
{
MatrixArray* newRange = MatrixArray::CreateMatrixArray();
for (unsigned int i = 0; i < length; i++)
newRange->Add(matrices[index + i]);
return newRange;
}
static void ShuffleParallelArrays(MatrixArray* array1, MatrixArray* array2 = nullptr)
{
static std::random_device rng;
static std::mt19937 gen(rng());
Matrix* value;
for (unsigned int n = array1->Count(); n > 1;)
{
n--;
unsigned int k = gen() % (n + 1);
value = array1->matrices[k];
array1->matrices[k] = array1->matrices[n];
array1->matrices[n] = value;
if (array2)
{
value = array2->matrices[k];
array2->matrices[k] = array2->matrices[n];
array2->matrices[n] = value;
}
}
}
};
class Randomization // play with learning rate when switching between these randomizations
{
private:
static float GetDouble()
{
static std::random_device rng;
static std::mt19937 gen(rng());
static std::uniform_real_distribution<float> dist(0.0f, 1.0f);
return dist(gen);
}
public:
static void RandomizeHeNormal(MatrixArray* Weights, MatrixArray* Biases)
{
for (unsigned int a = 0; a < Weights->Count(); a++)
{
float init = (float)sqrt(2.0 / Weights->GetMatrix(a)->Columns()); // HeNormal: good for ReLU activation
for (unsigned int i = 0; i < Weights->GetMatrix(a)->Rows(); i++)
for (unsigned int j = 0; j < Weights->GetMatrix(a)->Columns(); j++)
Weights->GetMatrix(a)->SetValue(i, j, GetDouble() * init - init * 0.5f);
}
for (unsigned int a = 0; a < Biases->Count(); a++)
{
for (unsigned int i = 0; i < Biases->GetMatrix(a)->Rows(); i++)
Biases->GetMatrix(a)->SetValue(i, 0, GetDouble() * 0.5f - 0.25f);
}
}
static void RandomizeGlorotXavier(MatrixArray* Weights, MatrixArray* Biases)
{
for (unsigned int a = 0; a < Weights->Count(); a++)
{
float init = (float)sqrt(6.0 / (Weights->GetMatrix(a)->Columns() + Weights->GetMatrix(a)->Rows())); // GlorotXavier: good for Tanh/Sigmoid activation
for (unsigned int i = 0; i < Weights->GetMatrix(a)->Rows(); i++)
for (unsigned int j = 0; j < Weights->GetMatrix(a)->Columns(); j++)
Weights->GetMatrix(a)->SetValue(i, j, GetDouble() * init - init * 0.5f);
}
for (unsigned int a = 0; a < Biases->Count(); a++)
{
for (unsigned int i = 0; i < Biases->GetMatrix(a)->Rows(); i++)
Biases->GetMatrix(a)->SetValue(i, 0, GetDouble() * 0.5f - 0.25f);
}
}
};
struct Functions
{
static unsigned int GetIndexMax(Matrix* m) // only pass 1 dimension matrices
{
unsigned int index = 0;
float a, maximum = m->GetValue(0, 0);
for (unsigned int i = 1; i < m->Rows(); i++)
{
a = m->GetValue(i, 0);
if (a > maximum)
{
maximum = a;
index = i;
}
}
return index;
}
static float Linear(float x) // Linear function
{
return x;
}
static float LinearPrime() // derivative of Linear function (the line's slope)
{
return 1;
}
// alpha default might be 0.01, but this can be modified, bigger or smaller; tensorflow uses 0.2 while keras uses 0.3
static float LeakyReLU(float x, float alpha) // Rectified Linear Unit function (Leaky variant)
{
return x >= 0.0f ? x : (alpha * x);
}
static float LeakyReLUPrime(float x, float alpha) // derivative of Leaky ReLU function
{
return x >= 0.0f ? 1.0f : alpha;
}
static float ReLU(float x) // Rectified Linear Unit function
{
return x > 0.0f ? x : 0.0f;
}
static float ReLUPrime(float x) // derivative of ReLU function
{
return x > 0.0f ? 1.0f : 0.0f;
}
static float ELU(float x, float alpha) // Exponential Linear Unit function
{
return x >= 0.0f ? x : (alpha * (exp(x) - 1));
}
static float ELUPrime(float x, float alpha) // derivative of ELU function
{
return x >= 0.0f ? 1.0f : (alpha * exp(x));
}
static float Tanh(float x)
{
return (exp(x) - exp(-x)) / (exp(x) + exp(-x));
}
static float TanhPrime(float x)
{
return 1.0f - ((exp(x) - exp(-x)) / (exp(x) + exp(-x))) * ((exp(x) - exp(-x)) / (exp(x) + exp(-x))); // this is simply: 1 - (tanh(x) * tanh(x))
}
static float Sigmoid(float x)
{
return 1.0f / (1 + exp(-x));
}
static float SigmoidPrime(float x) // derivative of Sigmoid function
{
return (1.0f / (1 + exp(-x))) * (1.0f - (1.0f / (1 + exp(-x)))); // this is simply: Sigmoid(x) * (1.0 - Sigmoid(x))
}
static void SoftMax(Matrix* input)
{
float maximum = input->GetValue(0, 0);
for (unsigned int i = 1; i < input->Rows(); i++)
if (input->GetValue(i, 0) > maximum)
maximum = input->GetValue(i, 0);
double sum = 0;
for (unsigned int i = 0; i < input->Rows(); i++)
sum += input->SetValue(i, 0, exp(input->GetValue(i, 0) - maximum));
for (unsigned int i = 0; i < input->Rows(); i++)
input->SetValue(i, 0, (float)(input->GetValue(i, 0) / sum));
}
};
class IActivationMethods
{
public:
virtual void ActivationMethod(Matrix* outputs) const = 0;
virtual void OutputActivationMethod(Matrix* outputs) const = 0;
virtual float Derivative(float input) const = 0;
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const = 0;
};
class ActivationReLUSoftMax : public IActivationMethods
{
public:
void ActivationMethod(Matrix* outputs) const override // Rectified Linear Unit function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::ReLU(outputs->GetValue(i, j)));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
Functions::SoftMax(outputs);
}
float Derivative(float input) const override
{
return Functions::ReLUPrime(input);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeHeNormal(Weights, Biases);
}
};
class ActivationELUSoftMax : public IActivationMethods
{
private:
float alpha;
public:
ActivationELUSoftMax(float alpha = 1.0f) : alpha(alpha) {}
void ActivationMethod(Matrix* outputs) const override // Exponential Linear Unit function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::ELU(outputs->GetValue(i, j), alpha));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
Functions::SoftMax(outputs);
}
float Derivative(float input) const override
{
return Functions::ELUPrime(input, alpha);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeHeNormal(Weights, Biases);
}
};
class ActivationLeakyReLUSoftMax : public IActivationMethods
{
private:
float alpha;
public:
ActivationLeakyReLUSoftMax(float alpha = 0.2) : alpha(alpha) {}
void ActivationMethod(Matrix* outputs) const override // Leaky Rectified Linear Unit function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::LeakyReLU(outputs->GetValue(i, j), alpha));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
Functions::SoftMax(outputs);
}
float Derivative(float input) const override
{
return Functions::LeakyReLUPrime(input, alpha);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeHeNormal(Weights, Biases);
}
};
class ActivationTanhSoftMax : public IActivationMethods
{
public:
void ActivationMethod(Matrix* outputs) const override // Tanh function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::Tanh(outputs->GetValue(i, j)));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
Functions::SoftMax(outputs);
}
float Derivative(float input) const override
{
return Functions::TanhPrime(input);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeGlorotXavier(Weights, Biases);
}
};
class ActivationSigmoidSoftMax : public IActivationMethods
{
public:
void ActivationMethod(Matrix* outputs) const override // Sigmoid function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::Sigmoid(outputs->GetValue(i, j)));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
Functions::SoftMax(outputs);
}
float Derivative(float input) const override
{
return Functions::TanhPrime(input);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeGlorotXavier(Weights, Biases);
}
};
class ActivationReLULinear : public IActivationMethods
{
public:
void ActivationMethod(Matrix* outputs) const override // Rectified Linear Unit function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::ReLU(outputs->GetValue(i, j)));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
// Linear
}
float Derivative(float input) const override
{
return Functions::ReLUPrime(input);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeHeNormal(Weights, Biases);
}
};
class ActivationELULinear : public IActivationMethods
{
private:
float alpha;
public:
ActivationELULinear(float alpha = 1.0f) : alpha(alpha) {}
void ActivationMethod(Matrix* outputs) const override // Exponential Linear Unit function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::ELU(outputs->GetValue(i, j), alpha));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
// Linear
}
float Derivative(float input) const override
{
return Functions::ELUPrime(input, alpha);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeHeNormal(Weights, Biases);
}
};
class ActivationLeakyReLULinear : public IActivationMethods
{
private:
float alpha;
public:
ActivationLeakyReLULinear(float alpha = 0.2) : alpha(alpha) {}
void ActivationMethod(Matrix* outputs) const override // Leaky Rectified Linear Unit function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::LeakyReLU(outputs->GetValue(i, j), alpha));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
// Linear
}
float Derivative(float input) const override
{
return Functions::LeakyReLUPrime(input, alpha);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeHeNormal(Weights, Biases);
}
};
class ActivationTanhLinear : public IActivationMethods
{
public:
void ActivationMethod(Matrix* outputs) const override // Tanh function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::Tanh(outputs->GetValue(i, j)));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
// Linear
}
float Derivative(float input) const override
{
return Functions::TanhPrime(input);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeGlorotXavier(Weights, Biases);
}
};
class ActivationSigmoidLinear : public IActivationMethods
{
public:
void ActivationMethod(Matrix* outputs) const override // Sigmoid function applied to whole matrix
{
for (unsigned int i = 0; i < outputs->Rows(); i++)
{
for (unsigned int j = 0; j < outputs->Columns(); j++)
outputs->SetValue(i, j, Functions::Sigmoid(outputs->GetValue(i, j)));
}
}
void OutputActivationMethod(Matrix* outputs) const override
{
// Linear
}
float Derivative(float input) const override
{
return Functions::TanhPrime(input);
}
virtual void Randomize(MatrixArray* Weights, MatrixArray* Biases) const override
{
Randomization::RandomizeGlorotXavier(Weights, Biases);
}
};
struct Cost
{
static void Delta(Matrix* outputs, Matrix* desiredOutputs, Matrix* deltaValue)
{
if (desiredOutputs->Rows() == 1 && deltaValue->Rows() != desiredOutputs->Rows()) // this is the same as "Sparse Categorical Cross-Entropy" (SCCE) and requires a Linear final activation; it requires that the calling program FeedForward(givenInputs, activationObject), SoftMax(feedForward) and then find the index of the maximum of the feedForward.
{
deltaValue->Copy(outputs);
unsigned int desiredIndex = (unsigned int)desiredOutputs->GetValue(0, 0);
deltaValue->SetValue(desiredIndex, 0, deltaValue->GetValue(desiredIndex, 0) - 1);
}
else // this is "Categorical Cross-Entropy" (CCE) and it requires a one-hot array for the desired outputs; it is not memory efficient.
{
for (unsigned int i = 0; i < deltaValue->Rows(); i++)
deltaValue->SetValue(i, 0, outputs->GetValue(i, 0) - desiredOutputs->GetValue(i, 0));
}
}
};
class NeuralNetwork;
struct BatchParams
{
NeuralNetwork* network;
MatrixArray* givenInputsBatch;
MatrixArray* desiredOutputsBatch;
MatrixArray* local_weights;
MatrixArray* local_biases;
MatrixArray* delta_gradient_w;
MatrixArray* delta_gradient_b;
IActivationMethods* activationObject;
float learningRate, lambda, clipThreshold;
unsigned int threadCount;
std::thread threadObj;
bool threadActive, errorFound;
~BatchParams();
BatchParams(NeuralNetwork* network,
MatrixArray* givenInputs,
MatrixArray* desiredOutputs,
IActivationMethods* activationObject,
float learningRate,
float lambda,
unsigned int threadCount,
float clipThreshold);
};
class NeuralNetwork
{
private:
const unsigned int layerCount;
NeuralNetwork() : layerCount(0), Weights(nullptr), Biases(nullptr) {}
NeuralNetwork(const NeuralNetwork& nn) : layerCount(0), Weights(nullptr), Biases(nullptr) {}
public:
MatrixArray* Weights;
MatrixArray* Biases;
NeuralNetwork(MatrixArray* Weights, MatrixArray* Biases, const unsigned int LayerCount) : Weights(Weights), Biases(Biases), layerCount(LayerCount) {}
~NeuralNetwork()
{
delete Weights;
Weights = nullptr;
delete Biases;
Biases = nullptr;
};
const unsigned int LayerCount() const { return layerCount; }
// clipThreshold may be needed when working with lots of data such as with somewhat large image recognition with a CNN, for example, but having clip threshold makes the network learn more slowly
// HeNormal initialization is generally used for networks with ReLU activations, as it considers the non-linearities introduced by ReLUs.
// If using non-ReLU activations, GlorotXavier initialization is used, which is designed for Sigmoid and Tanh functions.
static NeuralNetwork* CreateNeuralNetwork(const unsigned int* neuronLayers, const unsigned int neuronLayersLength, IActivationMethods* activationObject, bool biases = true)
{
MatrixArray* Biases = MatrixArray::CreateMatrixArray();
if (biases)
{
for (unsigned int i = 1; i < neuronLayersLength; i++)
{
if (!neuronLayers[i])
{
delete Biases;
return nullptr;
}
Biases->Add(new Matrix(neuronLayers[i], 1));
}
}
MatrixArray* Weights = MatrixArray::CreateMatrixArray();
for (unsigned int i = 0; i < neuronLayersLength - 1; i++)
{
if (!neuronLayers[i + 1] || !neuronLayers[i])
{
delete Weights;
delete Biases;
return nullptr;
}
Weights->Add(new Matrix(neuronLayers[i + 1], neuronLayers[i]));
}
activationObject->Randomize(Weights, Biases);
return new NeuralNetwork(Weights, Biases, neuronLayersLength);
}
// lambda is for the L2 regularization term, and should be a very small fraction (between zero and one) to help prevent overfitting and exploding gradients
// at zero, it provides no regularization and risks exploding gradients, use a clipThreshold, such as 5.0
// training might be slowed with multiple threads because the batch of training data of each thread is smaller and therefore has less to learn from; consider decreasing the number of threads as the epoch count increases and experimenting with the learning rate
// learningRate can decrease by using an algorithm such as: 0.1 ^ (epoch / (float)epochCount) * initialLearningRate
// An incompatible network or a matrix multiplication error will trigger the errorEncountered() callback function. The application should stop processing and gracefully exit when this happens.
// This returns false when the input and output counts do not match and when errorEncountered() is called.
bool Train(MatrixArray* givenInputs, MatrixArray* desiredOutputs, IActivationMethods* activationObject, float learningRate, float lambda, unsigned int threadCount = 0, float clipThreshold = 0.0f, void(*errorEncountered)() = nullptr)
{
if (givenInputs->Count() != desiredOutputs->Count())
return false;
threadCount = threadCount ? threadCount : std::thread::hardware_concurrency();
unsigned int mini_batch_size = givenInputs->Count() / threadCount;
if (mini_batch_size > 0)
{
BatchParams** bps = new BatchParams * [threadCount];
for (unsigned int x = 0; x < threadCount; x++)
bps[x] = new BatchParams(this, givenInputs->GetRange(x * mini_batch_size, mini_batch_size), desiredOutputs->GetRange(x * mini_batch_size, mini_batch_size), activationObject, learningRate, lambda, threadCount, clipThreshold);
bool errorFound = false;
while (ActiveThreadsRunning(bps, threadCount))
{
if (!errorFound && ThreadErrors(bps, threadCount))
{
if(errorEncountered)
errorEncountered();
errorFound = true;
}
std::this_thread::sleep_for(std::chrono::milliseconds(250)); // Sleep 250ms
}
if(errorFound)
{
for (unsigned int y = 0; y < threadCount; y++)
{
delete bps[y];
bps[y] = nullptr;
}
delete[] bps;
bps = nullptr;
return false;
}
for (unsigned int x = 0; x < Weights->Count(); x++)
{
MatrixArray* weights = MatrixArray::CreateMatrixArray();
for (unsigned int i = 0; i < threadCount; i++)
weights->Add(bps[i]->local_weights->GetMatrix(x));
ParameterAveraging(Weights->GetMatrix(x), weights);
delete weights;
}
for (unsigned int x = 0; x < Biases->Count(); x++)
{
MatrixArray* biases = MatrixArray::CreateMatrixArray();
for (unsigned int i = 0; i < threadCount; i++)
biases->Add(bps[i]->local_biases->GetMatrix(x));
ParameterAveraging(Biases->GetMatrix(x), biases);
delete biases;
}
for (unsigned int x = 0; x < threadCount; x++)
{
delete bps[x];
bps[x] = nullptr;
}
delete[] bps;
bps = nullptr;
}
for (unsigned int x = threadCount * mini_batch_size; x < givenInputs->Count(); x++)
{
if (!Train(givenInputs->GetMatrix(x), desiredOutputs->GetMatrix(x), activationObject, learningRate, lambda))
return false;
}
return true;
}
// lambda is for the L2 regularization term, and should be a very small fraction (between zero and one) to help prevent overfitting and exploding gradients
// at zero, it provides no regularization and risks exploding gradients, use a clipThreshold, such as 5.0
// learningRate can decrease by using an algorithm such as: 0.1 ^ (epoch / (float)epochCount) * initialLearningRate
// NOTE: For C++ the developer, this returns false when there is an error of using a different activation or there is a matrix multiplication error
bool Train(Matrix* givenInput, Matrix* desiredOutput, IActivationMethods* activationObject, float learningRate, float lambda, float clipThreshold = 0.0f)
{
MatrixArray* delta_gradient_w = MatrixArray::CreateMatrixArray(Weights->Count());
MatrixArray* delta_gradient_b = MatrixArray::CreateMatrixArray(Biases->Count());
if(!BackPropagate(this, Weights, Biases, givenInput, desiredOutput, activationObject, delta_gradient_w, delta_gradient_b, clipThreshold))
return false;
MatrixArray* new_weights = MatrixArray::CreateMatrixArray();
MatrixArray* new_biases = MatrixArray::CreateMatrixArray();
for (unsigned int i = 0; i < delta_gradient_w->Count(); i++)
{
for (unsigned int j = 0; j < delta_gradient_w->GetMatrix(i)->Rows(); j++)
{
for (unsigned int k = 0; k < delta_gradient_w->GetMatrix(i)->Columns(); k++)
{
float w = Weights->GetMatrix(i)->GetValue(j, k);
float nw = delta_gradient_w->GetMatrix(i)->GetValue(j, k);
delta_gradient_w->GetMatrix(i)->SetValue(j, k, (1 - learningRate * lambda) * w - learningRate * nw);
}
}
new_weights->Add(delta_gradient_w->GetMatrix(i));
}
for (unsigned int i = 0; i < delta_gradient_b->Count(); i++)
{
for (unsigned int j = 0; j < delta_gradient_b->GetMatrix(i)->Rows(); j++)
{
float b = Biases->GetMatrix(i)->GetValue(j, 0);
float nb = delta_gradient_b->GetMatrix(i)->GetValue(j, 0);
delta_gradient_b->GetMatrix(i)->SetValue(j, 0, b - learningRate * nb);
}
new_biases->Add(delta_gradient_b->GetMatrix(i));
}
delete Weights;
Weights = new_weights;
delete Biases;
Biases = new_biases;
delete delta_gradient_b;
delete delta_gradient_w;
return true;
}
unsigned int TrueIndex(Matrix* desiredOutputs)
{
if (desiredOutputs->Rows() == 1) // SCCE (w/Linear output)
return (unsigned int)desiredOutputs->GetValue(0, 0);
else // CCE
return Functions::GetIndexMax(desiredOutputs);
}
unsigned int PredictedIndex(Matrix* givenInputs, IActivationMethods* activationObject)
{
Matrix* ff = FeedForward(givenInputs, activationObject);
unsigned int index = Functions::GetIndexMax(ff);
delete ff;
return index;
}
double CalculateLoss(Matrix* givenInputs, Matrix* desiredOutputs, IActivationMethods* activationObject, unsigned int* predictedIndex, unsigned int* trueIndex)
{
unsigned int uiPredicted, uiTrue;
Matrix* ff = FeedForward(givenInputs, activationObject);
double loss = 0;
if (desiredOutputs->Rows() == 1 && givenInputs->Rows() != desiredOutputs->Rows()) // Sparse format: calculate SCCE (Linear)
{
Functions::SoftMax(ff); // Apply SoftMax to get probabilities
uiPredicted = Functions::GetIndexMax(ff);
uiTrue = (unsigned int)desiredOutputs->GetValue(0, 0); // holds the index of the true element
loss = -log(ff->GetValue(uiTrue, 0) + 1e-15); // Add small epsilon to avoid log(0)
}
else // One-hot encoded format
{
// During FeedForward, SoftMax already applied to get probabilities
uiPredicted = Functions::GetIndexMax(ff);
uiTrue = Functions::GetIndexMax(desiredOutputs);
// Calculate categorical cross-entropy
for (unsigned int i = 0; i < ff->Rows(); i++)
{
double y = desiredOutputs->GetValue(i, 0);
double p = ff->GetValue(i, 0);
loss += -y * log(p + 1e-15); // Add small epsilon to avoid log(0)
}
}
if (predictedIndex)
*predictedIndex = uiPredicted;
if (trueIndex)
*trueIndex = uiTrue;
delete ff;
return loss;
}
static void TrainMiniBatch(void* v)
{
BatchParams* bp = (BatchParams*)v;
double invSqrtThreadCount = 1.0 / sqrt(bp->threadCount);
for (unsigned int x = 0; x < bp->givenInputsBatch->Count(); x++)
{
if (!BackPropagate(bp->network, bp->local_weights, bp->local_biases, bp->givenInputsBatch->GetMatrix(x), bp->desiredOutputsBatch->GetMatrix(x), bp->activationObject, bp->delta_gradient_w, bp->delta_gradient_b, bp->clipThreshold))
{
bp->errorFound = true;
bp->threadActive = false;
return;
}
for (unsigned int i = 0; i < bp->delta_gradient_w->Count(); i++)
{
unsigned r = bp->delta_gradient_w->GetMatrix(i)->Rows();
for (unsigned int row = 0; row < bp->delta_gradient_w->GetMatrix(i)->Rows(); row++)
{
unsigned c = bp->delta_gradient_w->GetMatrix(i)->Columns();
for (unsigned int column = 0; column < bp->delta_gradient_w->GetMatrix(i)->Columns(); column++)
{
float w = bp->local_weights->GetMatrix(i)->GetValue(row, column);
float nw = bp->delta_gradient_w->GetMatrix(i)->GetValue(row, column);
bp->local_weights->GetMatrix(i)->SetValue(row, column, (float)((1 - bp->learningRate * bp->lambda) * w - bp->learningRate * invSqrtThreadCount * nw));
}
}
}
for (unsigned int i = 0; i < bp->delta_gradient_b->Count(); i++)
{
for (unsigned int row = 0; row < bp->delta_gradient_b->GetMatrix(i)->Rows(); row++)
{
float b = bp->local_biases->GetMatrix(i)->GetValue(row, 0);
float nb = bp->delta_gradient_b->GetMatrix(i)->GetValue(row, 0);
bp->local_biases->GetMatrix(i)->SetValue(row, 0, (float)(b - bp->learningRate * invSqrtThreadCount * nb));
}
}
}
bp->threadActive = false;
}
Matrix* FeedForward(Matrix* givenInputs, IActivationMethods* activationObject) const
{
Matrix* given = givenInputs;
for (unsigned int i = 0; i < layerCount - 1; i++)
{
Matrix* temp;
Matrix::Multiply(Weights->GetMatrix(i), given, &temp);
if (temp == nullptr) // Cannot multiply matrices
{
if (given != givenInputs)
{
delete given;
given = nullptr;
}
return nullptr;
}
if (Biases->Count() > 0) // add bias
{
for (unsigned int j = 0; j < temp->Rows(); j++)
for (unsigned int k = 0; k < temp->Columns(); k++)
temp->SetValue(j, k, temp->GetValue(j, k) + Biases->GetMatrix(i)->GetValue(j, 0));
}
if (i < layerCount - 2)
activationObject->ActivationMethod(temp);
else
activationObject->OutputActivationMethod(temp);
if (given != givenInputs)
{
delete given;
given = nullptr;
}
given = temp;
}
return (given == givenInputs ? nullptr : given);
}
private:
static bool ThreadErrors(BatchParams** bps, const unsigned int threadCount)
{
for (unsigned int i = 0; i < threadCount; i++)
if (bps[i]->errorFound)
return true; // probably a matrices multiplication error
return false;
}
static bool ActiveThreadsRunning(BatchParams** bps, const unsigned int threadCount)
{
for (unsigned int i = 0; i < threadCount; i++)
if (bps[i]->threadActive)
return true;
return false;
}
static void ParameterAveraging(Matrix* globalParameters, MatrixArray* localParametersOfThreads)
{
// Initialize a temporary matrix of doubles to hold the sum of local parameters
double** sumOfLocalParams = new double* [globalParameters->Rows()];
for(unsigned int i = 0; i < globalParameters->Rows(); i++)
sumOfLocalParams[i] = new double[globalParameters->Columns()];
for(unsigned int i = 0; i < globalParameters->Rows(); i++)
for (unsigned int j = 0; j < globalParameters->Columns(); j++)
sumOfLocalParams[i][j] = 0.0;
for (unsigned int threadId = 0; threadId < localParametersOfThreads->Count(); threadId++)
for (unsigned int row = 0; row < localParametersOfThreads->GetMatrix(threadId)->Rows(); row++)
for (unsigned int column = 0; column < localParametersOfThreads->GetMatrix(threadId)->Columns(); column++)
sumOfLocalParams[row][column] += localParametersOfThreads->GetMatrix(threadId)->GetValue(row, column);
// Update the global parameter matrix using parameter averaging formula
for (unsigned int row = 0; row < globalParameters->Rows(); row++)
for (unsigned int column = 0; column < globalParameters->Columns(); column++)
globalParameters->SetValue(row, column, (float)(sumOfLocalParams[row][column] / localParametersOfThreads->Count()));
// clean up
for (unsigned int i = 0; i < globalParameters->Rows(); i++)
delete[] sumOfLocalParams[i];
delete[] sumOfLocalParams;
}
// returns false when it cannot multiply matrices, which is do to an invalid network configuration
static bool BackPropagate(NeuralNetwork* network, MatrixArray* Weights, MatrixArray* Biases, Matrix* givenInputs, Matrix* desiredOutputs, IActivationMethods* activationObject, MatrixArray* delta_gradient_w, MatrixArray* delta_gradient_b, float clipThreshold) // uses Stochastic Gradient Descent
{
Matrix* activation = givenInputs;
MatrixArray* activations = MatrixArray::CreateMatrixArray();
activations->Add(activation);
MatrixArray* zs = MatrixArray::CreateMatrixArray();
// feed forward
for (unsigned int i = 0; i < network->layerCount - 1; i++)
{
Matrix* z;
Matrix::Multiply(Weights->GetMatrix(i), activation, &z);
if (z == nullptr) // this means it cannot multiply the matrices and cannot proceed
return false;
if (Biases->Count() > 0) // add bias
{
for (unsigned int j = 0; j < z->Rows(); j++)
for (unsigned int k = 0; k < z->Columns(); k++)
z->SetValue(j, k, z->GetValue(j, k) + Biases->GetMatrix(i)->GetValue(j, 0));
}
zs->Add(new Matrix(z));
if (i < network->layerCount - 2)
activationObject->ActivationMethod(z);
else
activationObject->OutputActivationMethod(z);
activation = z;
activations->Add(activation);
}
// backward pass
Matrix* act = activations->GetMatrix(activations->Count() - 1);
Matrix* delta = new Matrix(act->Rows(), act->Columns());
Cost::Delta(act, desiredOutputs, delta);
if (delta_gradient_b->Count() > 0)
delta_gradient_b->Set(new Matrix(delta), delta_gradient_b->Count() - 1); // this will replace the Matrix at the last position
Matrix* transposed = new Matrix(activations->GetMatrix(activations->Count() - 2));
transposed->Transpose();
Matrix* temp;
Matrix::Multiply(delta, transposed, &temp);
delete transposed;
transposed = nullptr;
if (temp == nullptr)
{
delete delta;
delta = nullptr;
return false;
}
delta_gradient_w->Set(temp, delta_gradient_w->Count() - 1);
for (unsigned int i = 2; i < network->layerCount; i++)
{
transposed = new Matrix(Weights->GetMatrix(network->layerCount - i));
transposed->Transpose();
Matrix::Multiply(transposed, delta, &temp);
delete transposed;
transposed = nullptr;
if (temp == nullptr)
{
delete delta;
delta = nullptr;
return false;
}
// multiply the derivative function on "temp"
Matrix* z = zs->GetMatrix(zs->Count() - i);
for (unsigned int j = 0; j < temp->Rows(); j++)
{
for (unsigned int k = 0; k < temp->Columns(); k++)
temp->SetValue(j, k, temp->GetValue(j, k) * activationObject->Derivative(z->GetValue(j, 0)));
}
delta->Copy(temp);
if (delta_gradient_b->Count() > 0)
delta_gradient_b->Set(temp, delta_gradient_b->Count() - i);
transposed = new Matrix(activations->GetMatrix(network->layerCount - i - 1));
transposed->Transpose();
Matrix::Multiply(delta, transposed, &temp);
delete transposed;
transposed = nullptr;
if (temp == nullptr)
{
delete delta;
delta = nullptr;
return false;
}
delta_gradient_w->Set(temp, delta_gradient_w->Count() - i);
}
delete delta;
delta = nullptr;
if (clipThreshold > 0) // if greater than zero then will take care of exploding gradients, but may hamper the network's ability to learn
{
double gradients_norm, scale_factor;
// biases
gradients_norm = 0;
for (unsigned int i = 0; i < delta_gradient_b->Count(); i++)
for (unsigned int j = 0; j < delta_gradient_b->GetMatrix(i)->Rows(); j++)
for (unsigned int k = 0; k < delta_gradient_b->GetMatrix(i)->Columns(); k++)
gradients_norm += delta_gradient_b->GetMatrix(i)->GetValue(j, k) * delta_gradient_b->GetMatrix(i)->GetValue(j, k);
gradients_norm = sqrt(gradients_norm);
if (gradients_norm > clipThreshold)
{
scale_factor = clipThreshold / gradients_norm;
for (unsigned int i = 0; i < delta_gradient_b->Count(); i++)
for (unsigned int j = 0; j < delta_gradient_b->GetMatrix(i)->Rows(); j++)
for (unsigned int k = 0; k < delta_gradient_b->GetMatrix(i)->Columns(); k++)
delta_gradient_b->GetMatrix(i)->SetValue(j, k, (float)(delta_gradient_b->GetMatrix(i)->GetValue(j, k) * scale_factor));
}
// weights
gradients_norm = 0;
for (unsigned int i = 0; i < delta_gradient_w->Count(); i++)
for (unsigned int j = 0; j < delta_gradient_w->GetMatrix(i)->Rows(); j++)
for (unsigned int k = 0; k < delta_gradient_w->GetMatrix(i)->Columns(); k++)
gradients_norm += delta_gradient_w->GetMatrix(i)->GetValue(j, k) * delta_gradient_w->GetMatrix(i)->GetValue(j, k);
gradients_norm = sqrt(gradients_norm);
if (gradients_norm > clipThreshold)
{
scale_factor = clipThreshold / gradients_norm;
for (unsigned int i = 0; i < delta_gradient_w->Count(); i++)
for (unsigned int j = 0; j < delta_gradient_w->GetMatrix(i)->Rows(); j++)
for (unsigned int k = 0; k < delta_gradient_w->GetMatrix(i)->Columns(); k++)
delta_gradient_w->GetMatrix(i)->SetValue(j, k, (float)(delta_gradient_w->GetMatrix(i)->GetValue(j, k) * scale_factor));
}
}
delete zs;
delete activations;
return true;
}
};
class NeuralNetworkJsonProcessor
{
private:
static const std::string floatToString(const float val)
{
std::stringstream tmp;
tmp << val;
return tmp.str();
}
static const std::string createJsonFromFloatArray(const float* values, const unsigned int length)
{
std::string json = "[";
for (unsigned int i = 0; i < length; i++)
{
if (i > 0)
json += ",";
json += floatToString(values[i]);
}
json += "]";
return json;
}
static const std::string createJsonFromMatrix(const Matrix* matrix)
{
std::string json = "{\"data\":";
json += createJsonFromFloatArray(matrix->Data(), matrix->Rows() * matrix->Columns());
json += ",\"rows\":";
json += std::to_string(matrix->Rows());
json += ",\"columns\":";
json += std::to_string(matrix->Columns());
json += "}";
return json;
}
static void createMatrix(std::ifstream& file, char& ch, Matrix** ppMatrix)
{
*ppMatrix = nullptr;
unsigned int rows = 0, columns = 0, size = 1000, idx = 0;
float* data = new float[size];
std::string tmp;
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch != '{')
goto escape_func;
if (!file.get(ch))
goto escape_func;
while (ch != '}')
{
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch != '"')
goto escape_func;
if (!file.get(ch))
goto escape_func;
for (tmp = ""; ch != '"'; )
{
tmp += ch;
if (!file.get(ch))
goto escape_func;
}
if (ch != '"')
goto escape_func;
if (!file.get(ch))
goto escape_func;
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch != ':')
goto escape_func;
if (!file.get(ch))
goto escape_func;
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (tmp == "data")
{
if (ch != '[')
goto escape_func;
if (!file.get(ch))
goto escape_func;
while (ch != ']')
{
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
tmp = "";
for (tmp = ""; (ch == 'E' || ch == 'e' || ch == '.' || ch == '-' || ch == '+' || isdigit(ch)); )
{
tmp += ch;
if (!file.get(ch))
goto escape_func;
}
if (tmp.length() == 0)
goto escape_func;
if (idx == size)
{
size = size + 3000;
float* d = new float[size];
for (unsigned int j = 0; j < idx; j++)
d[j] = data[j];
delete[] data;
for (unsigned int j = idx; j < size; j++)
d[j] = 0;
data = d;
}
data[idx++] = std::stof(tmp);
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch == ',')
if (!file.get(ch))
goto escape_func;
}
if (ch != ']')
goto escape_func;
if (!file.get(ch))
goto escape_func;
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch == ',')
if (!file.get(ch))
goto escape_func;
}
else if (tmp == "rows")
{
for (tmp = ""; isdigit(ch); )
{
tmp += ch;
if (!file.get(ch))
goto escape_func;
}
rows = std::stoul(tmp);
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch == ',')
if (!file.get(ch))
goto escape_func;
}
else if (tmp == "columns")
{
for (tmp = ""; isdigit(ch); )
{
tmp += ch;
if (!file.get(ch))
goto escape_func;
}
columns = std::stoul(tmp);
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch == ',')
if (!file.get(ch))
goto escape_func;
}
else
goto escape_func;
}
if (ch != '}')
goto escape_func;
if (!file.get(ch))
goto escape_func;
for (; std::isspace(ch); )
if (!file.get(ch))
goto escape_func;
if (ch == ',')
if (!file.get(ch))
goto escape_func;
*ppMatrix = new Matrix(rows, columns, data);
escape_func:
;
}
static void createMatrix(int& i, const char* str, Matrix** ppMatrix)
{
*ppMatrix = nullptr;
unsigned int rows = 0, columns = 0, size = 1000, idx = 0;
float* data = new float[size];
std::string tmp;
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] != '{')
goto escape_func;
i++;
while (str[i] && str[i] != '}')
{
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] != '"')
goto escape_func;
i++;
for (tmp = ""; str[i] && str[i] != '"'; i++)
tmp += str[i];
if (str[i] != '"')
goto escape_func;
i++;
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] != ':')
goto escape_func;
i++;
for (; str[i] && std::isspace(str[i]); i++);
if (tmp == "data")
{
if (str[i] != '[')
goto escape_func;
i++;
while (str[i] && str[i] != ']')
{
for (; str[i] && std::isspace(str[i]); i++);
tmp = "";
for (tmp = ""; str[i] && (str[i] == 'E' || str[i] == 'e' || str[i] == '.' || str[i] == '-' || str[i] == '+' || isdigit(str[i])); i++)
tmp += str[i];
if (!str[i] || tmp.length() == 0)
goto escape_func;
if (idx == size)
{
size = size + 3000;
float* d = new float[size];
for (unsigned int j = 0; j < idx; j++)
d[j] = data[j];
delete[] data;
for (unsigned int j = idx; j < size; j++)
d[j] = 0;
data = d;
}
data[idx++] = std::stof(tmp);
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] == ',')
i++;
}
if (str[i] != ']')
goto escape_func;
i++;
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] == ',')
i++;
else if (!str[i])
goto escape_func;
}
else if (tmp == "rows")
{
for (tmp = ""; str[i] && isdigit(str[i]); i++)
tmp += str[i];
rows = std::stoul(tmp);
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] == ',')
i++;
else if (!str[i])
goto escape_func;
}
else if (tmp == "columns")
{
for (tmp = ""; str[i] && isdigit(str[i]); i++)
tmp += str[i];
columns = std::stoul(tmp);
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] == ',')
i++;
else if (!str[i])
goto escape_func;
}
else
goto escape_func;
}
if (str[i] != '}')
goto escape_func;
i++;
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] == ',')
i++;
*ppMatrix = new Matrix(rows, columns, data);
escape_func:
;
}
public:
static NeuralNetwork* CreateNeuralNetwork(std::ifstream& file) // file should be a neural network JSON text file
{
MatrixArray* Weights = MatrixArray::CreateMatrixArray();
MatrixArray* Biases = MatrixArray::CreateMatrixArray();
unsigned int LayerCount = 0;
std::string tmp;
char ch;
if (!file.get(ch))
return nullptr;
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
if (ch != '{')
return nullptr;
while (file.get(ch))
{
if (ch == ',' || std::isspace(ch))
continue;
if (ch == '"')
{
if (!file.get(ch))
return nullptr;
for (tmp = ""; ch != '"'; )
{
tmp += ch;
if (!file.get(ch))
return nullptr;
}
if (tmp.length() == 0)
return nullptr;
if (!file.get(ch))
return nullptr;
if (tmp == "Weights" || tmp == "Biases")
{
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
if (ch == ':')
if (!file.get(ch))
return nullptr;
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
if (ch != '[')
return nullptr;
if (!file.get(ch))
return nullptr;
while (ch != ']')
{
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
while (ch == '{')
{
Matrix* m;
createMatrix(file, ch, &m);
if (!m)
return nullptr;
(tmp == "Weights" ? Weights : Biases)->Add(m);
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
}
}
if (ch == ']')
{
if (!file.get(ch))
return nullptr;
}
else
return nullptr;
}
else if (tmp == "LayerCount")
{
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
if (ch != ':')
return nullptr;
if (!file.get(ch))
return nullptr;
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
for (tmp = ""; ch != ',' && ch != '}' && std::isspace(ch) == false; )
{
tmp += ch;
if (!file.get(ch))
return nullptr;
}
LayerCount = std::stoul(tmp);
}
else
{
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
if (ch != ':')
return nullptr;
if (!file.get(ch))
return nullptr;
for (; std::isspace(ch); )
if (!file.get(ch))
return nullptr;
if (ch == '"')
{
if (!file.get(ch))
return nullptr;
for (; ch != '"'; )
if (!file.get(ch))
return nullptr;
if (ch != '"')
return nullptr;
if (ch == '"')
if (!file.get(ch))
return nullptr;
}
else if (ch == '[')
{
if (!file.get(ch))
return nullptr;
for (unsigned int count = 1; count > 0; )
{
if (ch == '[')
count++;
else if (ch == ']')
count--;
if (!file.get(ch))
return nullptr;
}
}
else if (ch == '{')
{
if (!file.get(ch))
return nullptr;
for (unsigned int count = 1; count > 0; )
{
if (ch == '{')
count++;
else if (ch == '}')
count--;
if (!file.get(ch))
return nullptr;
}
}
else if(isdigit(ch))
{
if (!file.get(ch))
return nullptr;
for (; isdigit(ch) || ch == '.'; )
if (!file.get(ch))
return nullptr;
}
else
continue;
}
}
else if(ch == '}')
break;
else
return nullptr;
if (ch == '"')
continue;
if (ch == '}') // then end of object found
break;
}
return new NeuralNetwork(Weights, Biases, LayerCount);
}
static NeuralNetwork* CreateNeuralNetwork(const char* json)
{
MatrixArray* Weights = MatrixArray::CreateMatrixArray();
MatrixArray* Biases = MatrixArray::CreateMatrixArray();
unsigned int LayerCount = 0;
std::string tmp;
const char* str = json;
int i = 0;
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] != '{')
return nullptr;
i++;
while (str[i])
{
if (str[i] == '}') // then end of object found
return new NeuralNetwork(Weights, Biases, LayerCount);
if (str[i] == ',' || std::isspace(str[i]))
{
i++;
continue;
}
if (str[i] == '"')
{
i++;
for (tmp = ""; str[i] && str[i] != '"'; i++)
tmp += str[i];
if (str[i] != '"' || tmp.length() == 0)
break;
i++;
if (tmp == "Weights" || tmp == "Biases")
{
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] == ':')
i++;
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] != '[')
break;
i++;
while (str[i] && str[i] != ']')
{
for (; str[i] && std::isspace(str[i]); i++);
while (str[i] && str[i] == '{')
{
Matrix* m;
createMatrix(i, str, &m);
if (!m)
break;
(tmp == "Weights" ? Weights : Biases)->Add(m);
for (; str[i] && std::isspace(str[i]); i++);
}
}
if (str[i] == ']')
i++;
else
break;
}
else if (tmp == "LayerCount")
{
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] != ':')
break;
i++;
for (; str[i] && std::isspace(str[i]); i++);
for (tmp = ""; str[i] && str[i] != ',' && str[i] != '}' && std::isspace(str[i]) == false; i++)
tmp += str[i];
LayerCount = std::stoul(tmp);
}
else
{
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] != ':')
break;
i++;
for (; str[i] && std::isspace(str[i]); i++);
if (str[i] == '"')
{
i++;
for (; str[i] && str[i] != '"'; i++);
if (str[i] != '"')
break;
if (str[i] == '"')
i++;
}
else if (str[i] == '[')
{
i++;
for (unsigned int count = 1; str[i] && count > 0; i++)
{
if (str[i] == '[')
count++;
else if (str[i] == ']')
count--;
}
}
else if (str[i] == '{')
{
i++;
for (unsigned int count = 1; str[i] && count > 0; i++)
{
if (str[i] == '{')
count++;
else if (str[i] == '}')
count--;
}
}
else if(isdigit(str[i]))
{
i++;
for (; str[i] && (isdigit(str[i]) || str[i] == '.'); i++);
}
else
continue;
}
}
else
break;
if (str[i] == '"' || str[i] == '}')
continue;
i++;
}
return nullptr;
}
static const std::string CreateJsonFromMatrixArray(const MatrixArray* matrixArray)
{
std::string json = "[";
for (unsigned int i = 0; i < matrixArray->Count(); i++)
{
if (i > 0)
json += ",";
json += createJsonFromMatrix(matrixArray->GetMatrix(i));
}
json += "]";
return json;
}
static MatrixArray* CreateMatrixArray(const char *str, int* len)
{
int i;
for (i = 0; str[i] && std::isspace(str[i]); i++);
if (str[i] != '[')
return nullptr;
*len = i;
}
static const std::string CreateJson(const NeuralNetwork *network)
{
std::string json = "{\"Weights\":";
json += CreateJsonFromMatrixArray(network->Weights);
json += ",\"Biases\":";
json += CreateJsonFromMatrixArray(network->Biases);
json += ",\"LayerCount\":";
json += std::to_string(network->LayerCount());
json += "}";
return json;
}
};
BatchParams::~BatchParams()
{
if(threadObj.joinable())
threadObj.join();
delete givenInputsBatch;
delete desiredOutputsBatch;
delete local_weights;
delete local_biases;
delete delta_gradient_w;
delete delta_gradient_b;
}
BatchParams::BatchParams(NeuralNetwork* network, MatrixArray* givenInputsBatch, MatrixArray* desiredOutputsBatch, IActivationMethods* activationObject, float learningRate, float lambda, unsigned int threadCount, float clipThreshold)
: network(network),
givenInputsBatch(givenInputsBatch),
desiredOutputsBatch(desiredOutputsBatch),
activationObject(activationObject),
learningRate(learningRate),
lambda(lambda),
threadCount(threadCount),
clipThreshold(clipThreshold),
local_weights(MatrixArray::CreateMatrixArray(network->Weights)),
local_biases(MatrixArray::CreateMatrixArray(network->Biases)),
delta_gradient_w(MatrixArray::CreateMatrixArray(network->Weights->Count())),
delta_gradient_b(MatrixArray::CreateMatrixArray(network->Biases->Count())),
threadObj(NeuralNetwork::TrainMiniBatch, this),
threadActive(true), errorFound(false) {}
}
#endif // !_CCE_NEURAL_NETWORK_H
The confusion matrix C# code:
using System;
using System.Collections.Generic;
namespace ML
{
public class Confusion
{
public List<Dictionary<string, string>> Samples { get; set; }
public IEnumerable<string> Categories { get; set; }
private Confusion()
{
Samples = new List<Dictionary<string, string>>();
Categories = Array.Empty<string>();
}
public Confusion(IEnumerable<string> categories)
{
Samples = new List<Dictionary<string, string>>();
Categories = categories;
}
public string ToJson()
{
return System.Text.Json.JsonSerializer.Serialize(this);
}
public void AddSample(string truth, string? label = null)
{
Samples.Add(new Dictionary<string, string>
{
{ "t", truth }, // t for true value
{ "l", label ?? "?" } // l for label
});
}
public void Reset()
{
Samples.Clear();
}
public string GetHtmlPage()
{
return $"<!DOCTYPE html><html lang='en'><head><meta charset='UTF-8' /><meta name='viewport' content='width=device-width, initial-scale=1.0' /><title>Confusion Matrix Chart</title><style>body{{margin:0;padding:0;}}</style></head><body><div id='confusion-container'></div><script src='data:text/javascript;base64,ZnVuY3Rpb24gX3R5cGVvZihuKXtyZXR1cm4gX3R5cGVvZj0iZnVuY3Rpb24iPT10eXBlb2YgU3ltYm9sJiYic3ltYm9sIj09dHlwZW9mIFN5bWJvbC5pdGVyYXRvcj9mdW5jdGlvbihuKXtyZXR1cm4gdHlwZW9mIG59OmZ1bmN0aW9uKG4pe3JldHVybiBuJiYiZnVuY3Rpb24iPT10eXBlb2YgU3ltYm9sJiZuLmNvbnN0cnVjdG9yPT09U3ltYm9sJiZuIT09U3ltYm9sLnByb3RvdHlwZT8ic3ltYm9sIjp0eXBlb2Ygbn0sX3R5cGVvZihuKX1mdW5jdGlvbiBfdG9Db25zdW1hYmxlQXJyYXkobil7cmV0dXJuIF9hcnJheVdpdGhvdXRIb2xlcyhuKXx8X2l0ZXJhYmxlVG9BcnJheShuKXx8X3Vuc3VwcG9ydGVkSXRlcmFibGVUb0FycmF5KG4pfHxfbm9uSXRlcmFibGVTcHJlYWQoKX1mdW5jdGlvbiBfbm9uSXRlcmFibGVTcHJlYWQoKXt0aHJvdyBuZXcgVHlwZUVycm9yKCJJbnZhbGlkIGF0dGVtcHQgdG8gc3ByZWFkIG5vbi1pdGVyYWJsZSBpbnN0YW5jZS5cbkluIG9yZGVyIHRvIGJlIGl0ZXJhYmxlLCBub24tYXJyYXkgb2JqZWN0cyBtdXN0IGhhdmUgYSBbU3ltYm9sLml0ZXJhdG9yXSgpIG1ldGhvZC4iKTt9ZnVuY3Rpb24gX2l0ZXJhYmxlVG9BcnJheShuKXtpZih0eXBlb2YgU3ltYm9sIT0idW5kZWZpbmVkIiYmbltTeW1ib2wuaXRlcmF0b3JdIT1udWxsfHxuWyJAQGl0ZXJhdG9yIl0hPW51bGwpcmV0dXJuIEFycmF5LmZyb20obil9ZnVuY3Rpb24gX2FycmF5V2l0aG91dEhvbGVzKG4pe2lmKEFycmF5LmlzQXJyYXkobikpcmV0dXJuIF9hcnJheUxpa2VUb0FycmF5KG4pfWZ1bmN0aW9uIF9jcmVhdGVGb3JPZkl0ZXJhdG9ySGVscGVyKG4sdCl7dmFyIGk9dHlwZW9mIFN5bWJvbCE9InVuZGVmaW5lZCImJm5bU3ltYm9sLml0ZXJhdG9yXXx8blsiQEBpdGVyYXRvciJdLHIsdSxmLGUsbztpZighaSl7aWYoQXJyYXkuaXNBcnJheShuKXx8KGk9X3Vuc3VwcG9ydGVkSXRlcmFibGVUb0FycmF5KG4pKXx8dCYmbiYmdHlwZW9mIG4ubGVuZ3RoPT0ibnVtYmVyIilyZXR1cm4gaSYmKG49aSkscj0wLHU9ZnVuY3Rpb24oKXt9LHtzOnUsbjpmdW5jdGlvbigpe3JldHVybiByPj1uLmxlbmd0aD97ZG9uZTohMH06e2RvbmU6ITEsdmFsdWU6bltyKytdfX0sZTpmdW5jdGlvbihuKXt0aHJvdyBuO30sZjp1fTt0aHJvdyBuZXcgVHlwZUVycm9yKCJJbnZhbGlkIGF0dGVtcHQgdG8gaXRlcmF0ZSBub24taXRlcmFibGUgaW5zdGFuY2UuXG5JbiBvcmRlciB0byBiZSBpdGVyYWJsZSwgbm9uLWFycmF5IG9iamVjdHMgbXVzdCBoYXZlIGEgW1N5bWJvbC5pdGVyYXRvcl0oKSBtZXRob2QuIik7fXJldHVybiBmPSEwLGU9ITEse3M6ZnVuY3Rpb24oKXtpPWkuY2FsbChuKX0sbjpmdW5jdGlvbigpe3ZhciBuPWkubmV4dCgpO3JldHVybiBmPW4uZG9uZSxufSxlOmZ1bmN0aW9uKG4pe2U9ITA7bz1ufSxmOmZ1bmN0aW9uKCl7dHJ5e2Z8fGkucmV0dXJuPT1udWxsfHxpLnJldHVybigpfWZpbmFsbHl7aWYoZSl0aHJvdyBvO319fX1mdW5jdGlvbiBfdW5zdXBwb3J0ZWRJdGVyYWJsZVRvQXJyYXkobix0KXtpZihuKXtpZih0eXBlb2Ygbj09InN0cmluZyIpcmV0dXJuIF9hcnJheUxpa2VUb0FycmF5KG4sdCk7dmFyIGk9T2JqZWN0LnByb3RvdHlwZS50b1N0cmluZy5jYWxsKG4pLnNsaWNlKDgsLTEpO3JldHVybihpPT09Ik9iamVjdCImJm4uY29uc3RydWN0b3ImJihpPW4uY29uc3RydWN0b3IubmFtZSksaT09PSJNYXAifHxpPT09IlNldCIpP0FycmF5LmZyb20obik6aT09PSJBcmd1bWVudHMifHwvXig/OlVpfEkpbnQoPzo4fDE2fDMyKSg/OkNsYW1wZWQpP0FycmF5JC8udGVzdChpKT9fYXJyYXlMaWtlVG9BcnJheShuLHQpOnZvaWQgMH19ZnVuY3Rpb24gX2FycmF5TGlrZVRvQXJyYXkobix0KXsodD09bnVsbHx8dD5uLmxlbmd0aCkmJih0PW4ubGVuZ3RoKTtmb3IodmFyIGk9MCxyPW5ldyBBcnJheSh0KTtpPHQ7aSsrKXJbaV09bltpXTtyZXR1cm4gcn1mdW5jdGlvbiBfY2xhc3NDYWxsQ2hlY2sobix0KXtpZighKG4gaW5zdGFuY2VvZiB0KSl0aHJvdyBuZXcgVHlwZUVycm9yKCJDYW5ub3QgY2FsbCBhIGNsYXNzIGFzIGEgZnVuY3Rpb24iKTt9ZnVuY3Rpb24gX2RlZmluZVByb3BlcnRpZXMobix0KXtmb3IodmFyIGkscj0wO3I8dC5sZW5ndGg7cisrKWk9dFtyXSxpLmVudW1lcmFibGU9aS5lbnVtZXJhYmxlfHwhMSxpLmNvbmZpZ3VyYWJsZT0hMCwidmFsdWUiaW4gaSYmKGkud3JpdGFibGU9ITApLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShuLF90b1Byb3BlcnR5S2V5KGkua2V5KSxpKX1mdW5jdGlvbiBfY3JlYXRlQ2xhc3Mobix0LGkpe3JldHVybiB0JiZfZGVmaW5lUHJvcGVydGllcyhuLnByb3RvdHlwZSx0KSxpJiZfZGVmaW5lUHJvcGVydGllcyhuLGkpLE9iamVjdC5kZWZpbmVQcm9wZXJ0eShuLCJwcm90b3R5cGUiLHt3cml0YWJsZTohMX0pLG59ZnVuY3Rpb24gX3RvUHJvcGVydHlLZXkobil7dmFyIHQ9X3RvUHJpbWl0aXZlKG4sInN0cmluZyIpO3JldHVybiJzeW1ib2wiPT1fdHlwZW9mKHQpP3Q6dCsiIn1mdW5jdGlvbiBfdG9QcmltaXRpdmUobix0KXt2YXIgaSxyO2lmKCJvYmplY3QiIT1fdHlwZW9mKG4pfHwhbilyZXR1cm4gbjtpZihpPW5bU3ltYm9sLnRvUHJpbWl0aXZlXSx2b2lkIDAhPT1pKXtpZihyPWkuY2FsbChuLHR8fCJkZWZhdWx0IiksIm9iamVjdCIhPV90eXBlb2YocikpcmV0dXJuIHI7dGhyb3cgbmV3IFR5cGVFcnJvcigiQEB0b1ByaW1pdGl2ZSBtdXN0IHJldHVybiBhIHByaW1pdGl2ZSB2YWx1ZS4iKTt9cmV0dXJuKCJzdHJpbmciPT09dD9TdHJpbmc6TnVtYmVyKShuKX1BcnJheS5wcm90b3R5cGUuZmxhdHx8KEFycmF5LnByb3RvdHlwZS5mbGF0PWZ1bmN0aW9uKCl7dmFyIG47aWYodGhpcz09bnVsbCl0aHJvdyBuZXcgRXJyb3IoInRoaXMgaXMgbnVsbCBvciBub3QgZGVmaW5lZCIpO3ZhciB0PU9iamVjdCh0aGlzKSxyPXQubGVuZ3RoPj4+MCxpPVtdO2ZvcihuPTA7bjxyO24rKylBcnJheS5pc0FycmF5KHRbbl0pP2kuY29uY2F0KHQuZmxhdCgpKTppLnB1c2godFtuXSk7cmV0dXJuIGl9KTt2YXIgQ29uZnVzaW9uTWF0cml4Q2hhcnQ9ZnVuY3Rpb24oKXtmdW5jdGlvbiBuKHQsaSxyKXt2YXIgZix1O19jbGFzc0NhbGxDaGVjayh0aGlzLG4pO3ZhciBzPXIubGVuZ3RoKzEsZT1NYXRoLm1pbih3aW5kb3cuaW5uZXJXaWR0aCx3aW5kb3cuaW5uZXJIZWlnaHQpLyhzKzEpLG89ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgidGFibGUiKTtvLnN0eWxlLmJvcmRlckNvbGxhcHNlPSJjb2xsYXBzZSI7by5zdHlsZS50ZXh0QWxpZ249ImNlbnRlciI7by5zdHlsZS5tYXJnaW5MZWZ0PWUrInB4IjtvLnN0eWxlLm1hcmdpblRvcD1lKyJweCI7dC5hcHBlbmRDaGlsZChvKTtmPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoImRpdiIpO2YuaW5uZXJIVE1MPSJwcmVkaWN0ZWQgY2F0ZWdvcnkiO2Yuc3R5bGUucG9zaXRpb249ImFic29sdXRlIjtmLnN0eWxlLmZvbnRTaXplPSJ4LWxhcmdlIjtmLnN0eWxlLnRvcD0iMHB4IjtmLnN0eWxlLmxlZnQ9ZSoxLjUrInB4IjtmLnN0eWxlLmhlaWdodD1lKyJweCI7Zi5zdHlsZS5kaXNwbGF5PSJmbGV4IjtmLnN0eWxlLmFsaWduSXRlbXM9ImNlbnRlciI7Zi5zdHlsZS5tYXJnaW5MZWZ0PWUvMisicHgiO3QuYXBwZW5kQ2hpbGQoZik7dT1kb2N1bWVudC5jcmVhdGVFbGVtZW50KCJkaXYiKTt1LmlubmVySFRNTD0idHJ1ZSBjYXRlZ29yeSI7dS5zdHlsZS5wb3NpdGlvbj0iYWJzb2x1dGUiO3Uuc3R5bGUuZm9udFNpemU9IngtbGFyZ2UiO3Uuc3R5bGUudG9wPWUqMisicHgiO3Uuc3R5bGUubGVmdD0iMHB4Ijt1LnN0eWxlLnRyYW5zZm9ybT0idHJhbnNsYXRlKC01MCUpIHJvdGF0ZSgtOTBkZWcpIjt1LnN0eWxlLmhlaWdodD1lKyJweCI7dS5zdHlsZS5kaXNwbGF5PSJmbGV4Ijt1LnN0eWxlLmFsaWduSXRlbXM9ImNlbnRlciI7dS5zdHlsZS5tYXJnaW5MZWZ0PWUvMisicHgiO3QuYXBwZW5kQ2hpbGQodSk7dGhpcy5nbyhpLHMscixvLGUpfXJldHVybiBfY3JlYXRlQ2xhc3Mobixbe2tleToiZ28iLHZhbHVlOmZ1bmN0aW9uKG4sdCxpLHIsdSl7Zm9yKHZhciBjLGUsZixzLGE9ZnVuY3Rpb24obix0LGkpe2Zvcih2YXIgZSxzLG8sZix1PVtdLHI9MDtyPG47cisrKWZvcih1W3JdPVtdLGY9MDtmPG47ZisrKXVbcl1bZl09MDtlPV9jcmVhdGVGb3JPZkl0ZXJhdG9ySGVscGVyKHQpO3RyeXtmb3IoZS5zKCk7IShzPWUubigpKS5kb25lOylvPXMudmFsdWUsdVtpLmluZGV4T2Yoby50KSsxXVtpLmluZGV4T2Yoby5sKSsxXSsrfWNhdGNoKGgpe2UuZShoKX1maW5hbGx5e2UuZigpfWZvcihyPTE7cjxuO3IrKylmb3IoZj0xO2Y8bjtmKyspdVswXVtmXSs9dVtyXVtmXSx1W3JdWzBdKz11W3JdW2ZdO2ZvcihyPTE7cjxuO3IrKyl1WzBdW3JdLT11W3JdWzBdLHVbMF1bcl0+MCYmKHVbMF1bcl09IisiK3VbMF1bcl0pO3JldHVybiB1WzBdWzBdPSIiLHV9LHY9ZnVuY3Rpb24obix0LGkpe3JldHVybihpLW4pLyh0LW4pfSxoPWEodCxuLGkpLGw9aC5zbGljZSgxKS5tYXAoZnVuY3Rpb24obil7cmV0dXJuIG4uc2xpY2UoMSl9KS5mbGF0KCkseT1NYXRoLm1pbi5hcHBseShNYXRoLF90b0NvbnN1bWFibGVBcnJheShsKSkscD1NYXRoLm1heC5hcHBseShNYXRoLF90b0NvbnN1bWFibGVBcnJheShsKSksbz0wO288dDtvKyspZm9yKGM9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgidHIiKSxyLmFwcGVuZENoaWxkKGMpLGU9MDtlPHQ7ZSsrKXtpZihmPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInRkIiksZi5zdHlsZS53aWR0aD11KyJweCIsZi5zdHlsZS5oZWlnaHQ9dSsicHgiLGYuc3R5bGUucGFkZGluZz0iMCIsbz09MCYmZT4wKXtmLmFwcGVuZENoaWxkKGRvY3VtZW50LmNyZWF0ZVRleHROb2RlKGlbZS0xXSkpO2Yuc3R5bGUub3ZlcmZsb3c9ImhpZGRlbiI7Zi5zdHlsZS52ZXJ0aWNhbEFsaWduPSJjZW50ZXIiO2Yuc3R5bGUudGV4dEFsaWduPSJjZW50ZXIiO3ZhciBzPTIqaFtvXVtlXS9oW2VdW29dLHc9cz49MD9zKjI1NTowLGI9czw9MD8tcyoyNTU6MDtmLnN0eWxlLmNvbG9yPSJyZ2IoIit3KyIsIitiKyIsMCkifWU9PTAmJm8+MCYmKGYuYXBwZW5kQ2hpbGQoZG9jdW1lbnQuY3JlYXRlVGV4dE5vZGUoaVtvLTFdKSksZi5zdHlsZS5vdmVyZmxvdz0iaGlkZGVuIixmLnN0eWxlLnZlcnRpY2FsQWxpZ249ImNlbnRlciIsZi5zdHlsZS50ZXh0QWxpZ249ImNlbnRlciIpO2YuYXBwZW5kQ2hpbGQoZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiYnIiKSk7Zi5hcHBlbmRDaGlsZChkb2N1bWVudC5jcmVhdGVUZXh0Tm9kZShoW29dW2VdKSk7bz4wJiZlPjAmJihzPXYoeSxwLGhbb11bZV0pLGYuc3R5bGUuYmFja2dyb3VuZENvbG9yPW89PWU/InJnYmEoMCwyNTUsMCwiK3MrIikiOiJyZ2JhKDI1NSwwLDAsIitzKyIpIik7Yy5hcHBlbmRDaGlsZChmKX19fV0pfSgpOw=='></script><script type='text/javascript'>var obj=JSON.parse('{ToJson()}');new ConfusionMatrixChart(document.getElementById('confusion-container'),obj.Samples,obj.Categories);</script></body></html>";
}
}
}
Here are the C# exports for the Windows DLL or the Linux shared library (.so).
using System.Runtime.InteropServices;
namespace ML
{
static class libCceNeuralNetwork
{
public delegate void errorEncounteredDelegate();
private const string dllName = "libCceNeuralNetwork.dll";
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern IntPtr WinCreateNetwork(uint[] neuronLayers, uint layerCount, uint activationObjectIndex, int useBiases);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern IntPtr WinCreateNetworkFromJson(string json);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern IntPtr WinCreateNetworkFromFile(string jsonFilePath);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern uint WinCreateJsonFileFromNetwork(IntPtr pNeuralNetwork, string jsonFileName);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern IntPtr WinCreateMatrixArray();
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern uint WinGetMatrixArrayCount(IntPtr pMatrixArray);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern IntPtr WinGetMatrix(IntPtr pMatrixArray, uint index);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern float WinGetMatrixValue(IntPtr pMatrix, uint row, uint column);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern void WinAddMatrixArrayData(IntPtr pMatrixArray, float[] pValues, uint rows, uint columns);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern uint WinGetActivationObjectIndex(string activationName);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern void WinShuffleParallelArrays(IntPtr matrixArray1, IntPtr matrixArray2);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern int WinTrain(IntPtr pNeuralNetwork, IntPtr pInputsMatrixArray, IntPtr pDesiredOutputsMatrixArray, uint activationObjectIndex, float learningRate, float lambda, uint threadCount, float clipThreshold, errorEncounteredDelegate? callback);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern uint WinTrueIndex(IntPtr pNeuralNetwork, IntPtr pDesiredOutputsMatrix);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern uint WinPredictedIndex(IntPtr pNeuralNetwork, IntPtr pGivenInputsMatrix, uint activationObjectIndex);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern double WinCalculateLoss(IntPtr pNeuralNetwork, IntPtr pGivenInputsMatrix, IntPtr pDesiredOutputsMatrix, uint activationObjectIndex, out uint predictedIndex, out uint trueIndex);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern void WinFreeMatrixArray(IntPtr pMatrixArray);
[DllImport(dllName, CallingConvention = CallingConvention.StdCall)]
private static extern void WinFreeNetwork(IntPtr pNeuralNetwork);
private const string soName = "libCceNeuralNetwork.so";
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr LinuxCreateNetwork(uint[] neuronLayers, uint layerCount, uint activationObjectIndex, int useBiases);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr LinuxCreateNetworkFromJson(string json);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr LinuxCreateNetworkFromFile(string jsonFilePath);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern uint LinuxCreateJsonFileFromNetwork(IntPtr pNeuralNetwork, string jsonFileName);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr LinuxCreateMatrixArray();
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern uint LinuxGetMatrixArrayCount(IntPtr pMatrixArray);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern IntPtr LinuxGetMatrix(IntPtr pMatrixArray, uint index);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern float LinuxGetMatrixValue(IntPtr pMatrix, uint row, uint column);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern void LinuxAddMatrixArrayData(IntPtr pMatrixArray, float[] pValues, uint rows, uint columns);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern uint LinuxGetActivationObjectIndex(string activationName);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern void LinuxShuffleParallelArrays(IntPtr matrixArray1, IntPtr matrixArray2);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern int LinuxTrain(IntPtr pNeuralNetwork, IntPtr pInputsMatrixArray, IntPtr pDesiredOutputsMatrixArray, uint activationObjectIndex, float learningRate, float lambda, uint threadCount, float clipThreshold, errorEncounteredDelegate? callback);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern uint LinuxTrueIndex(IntPtr pNeuralNetwork, IntPtr pDesiredOutputsMatrix);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern uint LinuxPredictedIndex(IntPtr pNeuralNetwork, IntPtr pGivenInputsMatrix, uint activationObjectIndex);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern double LinuxCalculateLoss(IntPtr pNeuralNetwork, IntPtr pGivenInputsMatrix, IntPtr pDesiredOutputsMatrix, uint activationObjectIndex, out uint predictedIndex, out uint trueIndex);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern void LinuxFreeMatrixArray(IntPtr pMatrixArray);
[DllImport(soName, CallingConvention = CallingConvention.Cdecl)]
private static extern void LinuxFreeNetwork(IntPtr pNeuralNetwork);
public static IntPtr CreateNetwork(uint[] neuronLayers, uint layerCount, uint activationObjectIndex, int useBiases)
{
if(RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinCreateNetwork(neuronLayers, layerCount, activationObjectIndex, useBiases);
else
return LinuxCreateNetwork(neuronLayers, layerCount, activationObjectIndex, useBiases);
}
public static IntPtr CreateNetworkFromJson(string json)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinCreateNetworkFromJson(json);
else
return LinuxCreateNetworkFromJson(json);
}
public static IntPtr CreateNetworkFromFile(string jsonFilePath)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinCreateNetworkFromFile(jsonFilePath);
else
return LinuxCreateNetworkFromFile(jsonFilePath);
}
public static uint CreateJsonFileFromNetwork(IntPtr pNeuralNetwork, string jsonFileName)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinCreateJsonFileFromNetwork(pNeuralNetwork, jsonFileName);
else
return LinuxCreateJsonFileFromNetwork(pNeuralNetwork, jsonFileName);
}
public static IntPtr CreateMatrixArray()
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinCreateMatrixArray();
else
return LinuxCreateMatrixArray();
}
public static uint GetMatrixArrayCount(IntPtr pMatrixArray)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinGetMatrixArrayCount(pMatrixArray);
else
return LinuxGetMatrixArrayCount(pMatrixArray);
}
public static IntPtr GetMatrix(IntPtr pMatrixArray, uint index)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinGetMatrix(pMatrixArray, index);
else
return LinuxGetMatrix(pMatrixArray, index);
}
public static float GetMatrixValue(IntPtr pMatrix, uint row, uint column = 0)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinGetMatrixValue(pMatrix, row, column);
else
return LinuxGetMatrixValue(pMatrix, row, column);
}
public static void AddMatrixArrayData(IntPtr pMatrixArray, float[] pValues, uint rows, uint columns = 1)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
WinAddMatrixArrayData(pMatrixArray, pValues, rows, columns);
else
LinuxAddMatrixArrayData(pMatrixArray, pValues, rows, columns);
}
public static uint GetActivationObjectIndex(string activationName)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinGetActivationObjectIndex(activationName);
else
return LinuxGetActivationObjectIndex(activationName);
}
public static void ShuffleParallelArrays(IntPtr matrixArray1, IntPtr matrixArray2)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
WinShuffleParallelArrays(matrixArray1, matrixArray2);
else
LinuxShuffleParallelArrays(matrixArray1, matrixArray2);
}
public static int Train(IntPtr pNeuralNetwork, IntPtr pInputsMatrixArray, IntPtr pDesiredOutputsMatrixArray, uint activationObjectIndex, float learningRate, float lambda, uint threadCount, float clipThreshold = 0f, errorEncounteredDelegate? callback = null)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinTrain(pNeuralNetwork, pInputsMatrixArray, pDesiredOutputsMatrixArray, activationObjectIndex, learningRate, lambda, threadCount, clipThreshold, callback);
else
return LinuxTrain(pNeuralNetwork, pInputsMatrixArray, pDesiredOutputsMatrixArray, activationObjectIndex, learningRate, lambda, threadCount, clipThreshold, callback);
}
public static uint TrueIndex(IntPtr pNeuralNetwork, IntPtr pDesiredOutputsMatrix)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinTrueIndex(pNeuralNetwork, pDesiredOutputsMatrix);
else
return LinuxTrueIndex(pNeuralNetwork, pDesiredOutputsMatrix);
}
public static uint PredictedIndex(IntPtr pNeuralNetwork, IntPtr pGivenInputsMatrix, uint activationObjectIndex)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinPredictedIndex(pNeuralNetwork, pGivenInputsMatrix, activationObjectIndex);
else
return LinuxPredictedIndex(pNeuralNetwork, pGivenInputsMatrix, activationObjectIndex);
}
public static double CalculateLoss(IntPtr pNeuralNetwork, IntPtr pGivenInputsMatrix, IntPtr pDesiredOutputsMatrix, uint activationObjectIndex, out uint predictedIndex, out uint trueIndex)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return WinCalculateLoss(pNeuralNetwork, pGivenInputsMatrix, pDesiredOutputsMatrix, activationObjectIndex, out predictedIndex, out trueIndex);
else
return LinuxCalculateLoss(pNeuralNetwork, pGivenInputsMatrix, pDesiredOutputsMatrix, activationObjectIndex, out predictedIndex, out trueIndex);
}
public static void FreeMatrixArray(IntPtr pMatrixArray)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
WinFreeMatrixArray(pMatrixArray);
else
LinuxFreeMatrixArray(pMatrixArray);
}
public static void FreeNetwork(IntPtr pNeuralNetwork)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
WinFreeNetwork(pNeuralNetwork);
else
LinuxFreeNetwork(pNeuralNetwork);
}
}
}
Windows DLL Code
Code specifically for the Windows DLL, if so desired.
#include <windows.h>
#include "cce_neural_network.h"
#include <fstream>
#include <string>
#define MAX_ACTIVATIONS 8
#define ACTIVATION_LEAKY_RELU_SOFTMAX 0
#define ACTIVATION_RELU_SOFTMAX 1
#define ACTIVATION_TANH_SOFTMAX 2
#define ACTIVATION_SIGMOID_SOFTMAX 3
#define ACTIVATION_LEAKY_RELU_LINEAR 4
#define ACTIVATION_RELU_LINEAR 5
#define ACTIVATION_TANH_LINEAR 6
#define ACTIVATION_SIGMOID_LINEAR 7
ML::IActivationMethods* activationObjects[MAX_ACTIVATIONS];
BOOL APIENTRY DllMain( HMODULE hModule, DWORD ul_reason_for_call, LPVOID lpReserved )
{
switch (ul_reason_for_call)
{
case DLL_PROCESS_ATTACH:
// SoftMax final layer activation for CCE
activationObjects[ACTIVATION_LEAKY_RELU_SOFTMAX] = new ML::ActivationLeakyReLUSoftMax(0.1f);
activationObjects[ACTIVATION_RELU_SOFTMAX] = new ML::ActivationReLUSoftMax();
activationObjects[ACTIVATION_TANH_SOFTMAX] = new ML::ActivationTanhSoftMax();
activationObjects[ACTIVATION_SIGMOID_SOFTMAX] = new ML::ActivationSigmoidSoftMax();
// Linear final layer activation for SCCE
activationObjects[ACTIVATION_LEAKY_RELU_LINEAR] = new ML::ActivationLeakyReLULinear(0.1f);
activationObjects[ACTIVATION_RELU_LINEAR] = new ML::ActivationReLULinear();
activationObjects[ACTIVATION_TANH_LINEAR] = new ML::ActivationTanhLinear();
activationObjects[ACTIVATION_SIGMOID_LINEAR] = new ML::ActivationSigmoidLinear();
break;
case DLL_THREAD_ATTACH:
break;
case DLL_THREAD_DETACH:
break;
case DLL_PROCESS_DETACH:
for (int i = 0; i < MAX_ACTIVATIONS; i++)
delete activationObjects[i];
break;
}
return TRUE;
}
extern "C"
{
ML::NeuralNetwork* __stdcall WinCreateNetwork(const unsigned int* neuronLayers, unsigned int layerCount, unsigned int activationObjectIndex, int useBiases)
{
if(activationObjectIndex < MAX_ACTIVATIONS)
return ML::NeuralNetwork::CreateNeuralNetwork(neuronLayers, layerCount, activationObjects[activationObjectIndex], (bool)useBiases);
return nullptr;
}
ML::NeuralNetwork* __stdcall WinCreateNetworkFromJson(const char* json)
{
return ML::NeuralNetworkJsonProcessor::CreateNeuralNetwork(json);
}
ML::NeuralNetwork* __stdcall WinCreateNetworkFromFile(const char* jsonFilePath)
{
std::ifstream file(jsonFilePath);
if (!file.is_open())
return nullptr;
ML::NeuralNetwork* result = ML::NeuralNetworkJsonProcessor::CreateNeuralNetwork(file);
file.close();
return result;
}
unsigned int __stdcall WinCreateJsonFileFromNetwork(const ML::NeuralNetwork* pNeuralNetwork, const char* jsonFileName)
{
std::ofstream jsonFile(jsonFileName);
if (jsonFile.is_open())
{
jsonFile << ML::NeuralNetworkJsonProcessor::CreateJson(pNeuralNetwork);
jsonFile.close();
return 1;
}
return 0;
}
ML::MatrixArray* __stdcall WinCreateMatrixArray()
{
return ML::MatrixArray::CreateMatrixArray();
}
unsigned int __stdcall WinGetMatrixArrayCount(ML::MatrixArray* pMatrixArray)
{
return pMatrixArray->Count();
}
ML::Matrix* __stdcall WinGetMatrix(ML::MatrixArray* pMatrixArray, unsigned int index)
{
return pMatrixArray->GetMatrix(index);
}
float __stdcall WinGetMatrixValue(ML::Matrix* pMatrix, unsigned int row, unsigned int column)
{
return pMatrix->GetValue(row, column);
}
void __stdcall WinAddMatrixArrayData(ML::MatrixArray* pMatrixArray, float* pValues, unsigned int rows, unsigned int columns)
{
pMatrixArray->Add(new ML::Matrix(rows, columns, pValues));
}
unsigned int __stdcall WinGetActivationObjectIndex(char* activationName)
{
std::string name = activationName;
if (name == "LeakyReLUSoftMax")
return ACTIVATION_LEAKY_RELU_SOFTMAX;
if (name == "ReLUSoftMax")
return ACTIVATION_RELU_SOFTMAX;
if (name == "TanhSoftMax")
return ACTIVATION_TANH_SOFTMAX;
if (name == "SigmoidSoftMax")
return ACTIVATION_SIGMOID_SOFTMAX;
if (name == "LeakyReLULinear")
return ACTIVATION_LEAKY_RELU_LINEAR;
if (name == "ReLULinear")
return ACTIVATION_RELU_LINEAR;
if (name == "TanhLinear")
return ACTIVATION_TANH_LINEAR;
if (name == "SigmoidLinear")
return ACTIVATION_SIGMOID_LINEAR;
return 0xFFFFFFFF;
}
void __stdcall WinShuffleParallelArrays(ML::MatrixArray* matrixArray1, ML::MatrixArray* matrixArray2)
{
ML::MatrixArray::ShuffleParallelArrays(matrixArray1, matrixArray2);
}
int __stdcall WinTrain(ML::NeuralNetwork* pNeuralNetwork, ML::MatrixArray* inputsMatrixArray, ML::MatrixArray* desiredOutputsMatrixArray, unsigned int activationObjectIndex, float learningRate, float lambda, unsigned int threadCount, float clipThreshold, void(*errorEncountered)())
{
if (activationObjectIndex < MAX_ACTIVATIONS)
return pNeuralNetwork->Train(inputsMatrixArray, desiredOutputsMatrixArray, activationObjects[activationObjectIndex], learningRate, lambda, threadCount, clipThreshold, errorEncountered);
return 0;
}
unsigned int __stdcall WinTrueIndex(ML::NeuralNetwork* pNeuralNetwork, ML::Matrix* desiredOutputsMatrix)
{
return pNeuralNetwork->TrueIndex(desiredOutputsMatrix);
}
unsigned int __stdcall WinPredictedIndex(ML::NeuralNetwork* pNeuralNetwork, ML::Matrix* givenInputsMatrix, unsigned int activationObjectIndex)
{
if (activationObjectIndex < MAX_ACTIVATIONS)
return pNeuralNetwork->PredictedIndex(givenInputsMatrix, activationObjects[activationObjectIndex]);
return 0xFFFFFFFF;
}
double __stdcall WinCalculateLoss(ML::NeuralNetwork* pNeuralNetwork, ML::Matrix* givenInputsMatrix, ML::Matrix* desiredOutputsMatrix, unsigned int activationObjectIndex, unsigned int* predictedIndex, unsigned int* trueIndex)
{
if (activationObjectIndex < MAX_ACTIVATIONS)
return pNeuralNetwork->CalculateLoss(givenInputsMatrix, desiredOutputsMatrix, activationObjects[activationObjectIndex], predictedIndex, trueIndex);
return 0xFFFFFFFF;
}
void __stdcall WinFreeMatrixArray(ML::MatrixArray* pMatrixArray)
{
delete pMatrixArray;
}
void __stdcall WinFreeNetwork(ML::NeuralNetwork* pNeuralNetwork)
{
delete pNeuralNetwork;
}
}
And, the DEF file to export the functions from the Windows DLL.
LIBRARY libCceNeuralNetwork
EXPORTS
WinCreateNetwork @1
WinCreateNetworkFromJson @2
WinCreateNetworkFromFile @3
WinCreateJsonFileFromNetwork @4
WinCreateMatrixArray @5
WinGetMatrixArrayCount @6
WinGetMatrix @7
WinGetMatrixValue @8
WinAddMatrixArrayData @9
WinGetActivationObjectIndex @10
WinShuffleParallelArrays @11
WinTrain @12
WinTrueIndex @13
WinPredictedIndex @14
WinCalculateLoss @15
WinFreeMatrixArray @16
WinFreeNetwork @17
Linux SO (Shared Library) Code
// LINUX SPECIFIC SOURCE FILE: FOR SHARED LIBRARY FUNCTION EXPORTS
#include "cce_neural_network.h"
#include <fstream>
#include <string>
#define MAX_ACTIVATIONS 8
#define ACTIVATION_LEAKY_RELU_SOFTMAX 0
#define ACTIVATION_RELU_SOFTMAX 1
#define ACTIVATION_TANH_SOFTMAX 2
#define ACTIVATION_SIGMOID_SOFTMAX 3
#define ACTIVATION_LEAKY_RELU_LINEAR 4
#define ACTIVATION_RELU_LINEAR 5
#define ACTIVATION_TANH_LINEAR 6
#define ACTIVATION_SIGMOID_LINEAR 7
ML::IActivationMethods* activationObjects[MAX_ACTIVATIONS];
// .so Constructor function
__attribute__((constructor)) void library_init()
{
// SoftMax final layer activation for CCE
activationObjects[ACTIVATION_LEAKY_RELU_SOFTMAX] = new ML::ActivationLeakyReLUSoftMax(0.1f);
activationObjects[ACTIVATION_RELU_SOFTMAX] = new ML::ActivationReLUSoftMax();
activationObjects[ACTIVATION_TANH_SOFTMAX] = new ML::ActivationTanhSoftMax();
activationObjects[ACTIVATION_SIGMOID_SOFTMAX] = new ML::ActivationSigmoidSoftMax();
// Linear final layer activation for SCCE
activationObjects[ACTIVATION_LEAKY_RELU_LINEAR] = new ML::ActivationLeakyReLULinear(0.1f);
activationObjects[ACTIVATION_RELU_LINEAR] = new ML::ActivationReLULinear();
activationObjects[ACTIVATION_TANH_LINEAR] = new ML::ActivationTanhLinear();
activationObjects[ACTIVATION_SIGMOID_LINEAR] = new ML::ActivationSigmoidLinear();
}
// .so Destructor function
__attribute__((destructor)) void library_cleanup()
{
for (int i = 0; i < MAX_ACTIVATIONS; i++)
delete activationObjects[i];
}
extern "C"
{
__attribute__((visibility("default"))) ML::NeuralNetwork* LinuxCreateNetwork(const unsigned int* neuronLayers, unsigned int layerCount, unsigned int activationObjectIndex, int useBiases)
{
if (activationObjectIndex < MAX_ACTIVATIONS)
return ML::NeuralNetwork::CreateNeuralNetwork(neuronLayers, layerCount, activationObjects[activationObjectIndex], (bool)useBiases);
return nullptr;
}
__attribute__((visibility("default"))) ML::NeuralNetwork* LinuxCreateNetworkFromJson(const char* json)
{
return ML::NeuralNetworkJsonProcessor::CreateNeuralNetwork(json);
}
__attribute__((visibility("default"))) ML::NeuralNetwork* LinuxCreateNetworkFromFile(const char* jsonFilePath)
{
std::ifstream file(jsonFilePath);
if (!file.is_open())
return nullptr;
ML::NeuralNetwork* result = ML::NeuralNetworkJsonProcessor::CreateNeuralNetwork(file);
file.close();
return result;
}
__attribute__((visibility("default"))) unsigned int LinuxCreateJsonFileFromNetwork(const ML::NeuralNetwork* pNeuralNetwork, const char* jsonFileName)
{
std::ofstream jsonFile(jsonFileName);
if (jsonFile.is_open())
{
jsonFile << ML::NeuralNetworkJsonProcessor::CreateJson(pNeuralNetwork);
jsonFile.close();
return 1;
}
return 0;
}
__attribute__((visibility("default"))) ML::MatrixArray* LinuxCreateMatrixArray()
{
return ML::MatrixArray::CreateMatrixArray();
}
__attribute__((visibility("default"))) unsigned int LinuxGetMatrixArrayCount(ML::MatrixArray* pMatrixArray)
{
return pMatrixArray->Count();
}
__attribute__((visibility("default"))) ML::Matrix* LinuxGetMatrix(ML::MatrixArray* pMatrixArray, unsigned int index)
{
return pMatrixArray->GetMatrix(index);
}
__attribute__((visibility("default"))) float LinuxGetMatrixValue(ML::Matrix* pMatrix, unsigned int row, unsigned int column)
{
return pMatrix->GetValue(row, column);
}
__attribute__((visibility("default"))) void LinuxAddMatrixArrayData(ML::MatrixArray* pMatrixArray, float* pValues, unsigned int rows, unsigned int columns)
{
pMatrixArray->Add(new ML::Matrix(rows, columns, pValues));
}
__attribute__((visibility("default"))) unsigned int LinuxGetActivationObjectIndex(char* activationName)
{
std::string name = activationName;
if (name == "LeakyReLUSoftMax")
return ACTIVATION_LEAKY_RELU_SOFTMAX;
if (name == "ReLUSoftMax")
return ACTIVATION_RELU_SOFTMAX;
if (name == "TanhSoftMax")
return ACTIVATION_TANH_SOFTMAX;
if (name == "SigmoidSoftMax")
return ACTIVATION_SIGMOID_SOFTMAX;
if (name == "LeakyReLULinear")
return ACTIVATION_LEAKY_RELU_LINEAR;
if (name == "ReLULinear")
return ACTIVATION_RELU_LINEAR;
if (name == "TanhLinear")
return ACTIVATION_TANH_LINEAR;
if (name == "SigmoidLinear")
return ACTIVATION_SIGMOID_LINEAR;
return 0xFFFFFFFF;
}
__attribute__((visibility("default"))) void LinuxShuffleParallelArrays(ML::MatrixArray* matrixArray1, ML::MatrixArray* matrixArray2)
{
ML::MatrixArray::ShuffleParallelArrays(matrixArray1, matrixArray2);
}
__attribute__((visibility("default"))) int LinuxTrain(ML::NeuralNetwork* pNeuralNetwork, ML::MatrixArray* inputsMatrixArray, ML::MatrixArray* desiredOutputsMatrixArray, unsigned int activationObjectIndex, float learningRate, float lambda, unsigned int threadCount, float clipThreshold, void(*errorEncountered)())
{
if (activationObjectIndex < MAX_ACTIVATIONS)
return pNeuralNetwork->Train(inputsMatrixArray, desiredOutputsMatrixArray, activationObjects[activationObjectIndex], learningRate, lambda, threadCount, clipThreshold, errorEncountered);
return 0;
}
__attribute__((visibility("default"))) unsigned int LinuxTrueIndex(ML::NeuralNetwork* pNeuralNetwork, ML::Matrix* desiredOutputsMatrix)
{
return pNeuralNetwork->TrueIndex(desiredOutputsMatrix);
}
__attribute__((visibility("default"))) unsigned int LinuxPredictedIndex(ML::NeuralNetwork* pNeuralNetwork, ML::Matrix* givenInputsMatrix, unsigned int activationObjectIndex)
{
if (activationObjectIndex < MAX_ACTIVATIONS)
return pNeuralNetwork->PredictedIndex(givenInputsMatrix, activationObjects[activationObjectIndex]);
return 0xFFFFFFFF;
}
__attribute__((visibility("default"))) double LinuxCalculateLoss(ML::NeuralNetwork* pNeuralNetwork, ML::Matrix* givenInputsMatrix, ML::Matrix* desiredOutputsMatrix, unsigned int activationObjectIndex, unsigned int* predictedIndex, unsigned int* trueIndex)
{
if (activationObjectIndex < MAX_ACTIVATIONS)
return pNeuralNetwork->CalculateLoss(givenInputsMatrix, desiredOutputsMatrix, activationObjects[activationObjectIndex], predictedIndex, trueIndex);
return 0xFFFFFFFF;
}
__attribute__((visibility("default"))) void LinuxFreeMatrixArray(ML::MatrixArray* pMatrixArray)
{
delete pMatrixArray;
}
__attribute__((visibility("default"))) void LinuxFreeNetwork(ML::NeuralNetwork* pNeuralNetwork)
{
delete pNeuralNetwork;
}
}